Tag Archive for: waste reduction

Is Food Waste the New Food Security?

Global food manufacturers play a significant role in food waste, contributing approximately 1.6 billion tons of lost or wasted food annually.  Of this, 570 million tons arise directly in production and processing, generating 8-10% of global greenhouse gas emissions.  Nearly one-fifth of all food produced—equivalent to around 1 billion meals a day—ends up wasted, costing the economy more than US$1 trillion each year.

In food manufacturing specifically, waste is generated through several points, including inefficient processing, spoilage due to improper storage, and discarding byproducts that could be repurposed.  High-waste categories include fruit and vegetable processing, where nearly half of the raw material can end up as waste, and meat processing, where around 20-30% is typically discarded as unusable parts.  Additionally, many manufacturing systems lack effective technologies to capture and repurpose these byproducts, resulting in significant resource loss.

Improving efficiency in food processing — by adopting technologies that fully utilise raw materials and reduce waste — can dramatically cut down on the waste footprint of global food manufacturers, reducing both food insecurity and environmental impact.

Not only that, but modern technology methods also reduce the cost of manufacture and increase the overall yield – imagine being able to feed more people, and with enhanced nutrition, thus improving overall health…

Tools like the Green Cell Technologies (GCT) Disruptor® technology effectively breaks down cell walls, allowing for more complete nutrient recovery and creating nutrient-dense products that support food security.

These advanced extraction methods can play a transformative role by:

  1. Enhancing Nutrient Density: Fully breaking down cell walls allows for more complete nutrient recovery, providing higher-quality, nutrient-dense products that can support food security.
  2. Reducing Post-Processing Waste: Instead of discarding byproducts, efficient extraction processes repurpose what would otherwise be waste, reducing the total amount of food loss.
  3. Supporting Sustainable Food Systems: By maximizing the use of each ingredient, these technologies lessen the need for additional agricultural resources, thereby helping to conserve land, water, and energy.

By integrating advanced processing technologies, food manufacturers can cut down on waste, minimize environmental impact, and provide a sustainable path toward reducing food insecurity. This approach creates a more resilient, efficient food system, where every resource is utilized to its fullest potential.

For more details on the impact of food waste, see: the WFP’s article on food waste and hunger, as well as refer to reports from the UNEP Food Waste Index and the Food and Agriculture Organisation (FAO). 

Breaking Up is Easy to Do…Thanks to Green Cell’s Disruptor® Technology!

We’ve all heard the classic tune: “Breaking up is hard to do…” but we’d like to politely disagree! When it comes to our Disruptor® technology, breaking up — or more specifically, breaking down — is not only easy; it’s revolutionary.

Our Disruptor® technology is rewriting the rules for cell disruption, achieving incredibly efficient breakdowns of natural materials with precision and minimal waste.  Think of it as the effortless breakup song of the processing world: there’s no resistance, no damage, just a clean, easy split that leaves everything (well, almost) right where it should be.  Unlike conventional extraction methods, which strain and stress out materials to extract their goodness, Disruptor® breaks up cell walls effortlessly, releasing nutrients, biomaterials, and valuable compounds in a way that’s pure, unadulterated, and yes — easier than ever.

Breaking Down for a Better Planet

What makes Disruptor® so unique?  Traditional methods struggle with achieving efficient cell disruption without causing waste or compromising nutrient integrity. Our technology achieves high yield extractions without any chemical additives or extreme temperatures, meaning it’s not only gentle on the planet but also produces purer outputs that benefit consumers.

Picture the old breakup song one more time: instead of a messy split with wasted energy, you get a clean break that saves resources, reduces waste, and gives you exactly what you came for — all without the “heartache.”

Why Breaking Up Can Be Easy with Green Cell Technologies:

  1. Efficiency That’s Smooth as a Melody: Disruptor® technology achieves high cell disruption effortlessly, processing materials into valuable extracts that retain their full integrity and potency.
  2. Waste Reduction, Amplified: With every breakdown, waste is minimised,  ensuring that only the purest forms of natural ingredients make their way into products.
  3. Eco-Friendly Extraction: No harsh chemicals, no wasted resources. The Dynamic Cellular Disruption® (DCD®) process through the Disruptor® embraces natural efficiency, prioritising sustainability every step of the way.
  4. Precision at Its Core: The precision of Disruptor® means every cell is disrupted to extract what’s needed, maintaining the natural essence of ingredients in a way that older methods simply can’t match.

So, let’s break up the right way — with clean, efficient, and powerful technology that truly sings! With Green Cell’s Disruptor®, “breaking up” has never been easier… or better for the world around us.

Fruit Juice – to Fibre or Not, that is the Question

Go all the way – A disruptive solution for digestible and nutritious favourites is turning the fruit juice industry on its head

Fruit juice has been a standard on the menu for many households ever since we learnt how to squeeze nature’s bounty and sup on its joyous essence.  Unfortunately for us though, most of this liquid contains very little, if any, nutritional benefit.  Indeed, it could be argued that what we have been consuming has had a negative effect on our systems.  This is certainly true of products that rely on added sugar to bolster their flavour.

The only reason we have squeezed, pressed, or stomped on the fruit is because that was the only way – or so we all thought – in which to extract the juice.  Not knowing any better, we, as consumers, took it for granted that this was as good as it gets, and we simply got on with the business and pleasure of drinking the products at our disposal.

Nutritionists, though, have argued for years that the whole fruit is better for us, and we should be eating our juice instead – skin and all.  They are right.  But, even when eating our fruits, our body doesn’t necessarily process all that available goodness, as it depends entirely on what the bio-availability co-efficient is of each molecule and the body’s ability to process it – we are all different.

If that sounds hard to swallow, then here’s a simpler explanation.

The human body is its own built-in extraction system – bite the apple, chew the apple, it goes through the system and the body takes up what it can.  But the problem is we also tend not to chew properly, and our cells are only taking up a small fraction of the available molecules of the chewed fruit (or vegetable or protein etc that we are eating), the rest of it is excreted.

Now, if we were able to access more of the molecules – as in a whole fruit (or veggie juice), then our body would be able to use all of what it can of what is available to us, as there is simply more that is bioavailable to the body to be taken up by our system.

Thanks to modern advancements in extraction processing technology, this is now possible.

Why fibre matters

Post COVID-19, there has been a boost in wellness awareness amongst consumers and increasingly, what we eat and how it is made (en masse).  Consumers are now driving industry to embrace necessary change to encompass this shift towards healthier, more wholesome options in how they manufacture the foods we consume.

One area where this change is particularly evident is in fruit juices. Traditionally viewed as a convenient source of vitamins and minerals, many fruit juices lacked an essential component: fibre.

Fibre is a crucial component of a healthy diet, yet it’s often overlooked. Found in fruits, vegetables, whole grains, and legumes, fibre plays a vital role in digestive health, weight management, and disease prevention. Despite its importance, many processed foods, including fruit juices, are stripped of fibre during production, leaving consumers with a nutrient-deficient beverage.

However, with the advent of Disruptor® technology, food manufacturers are now revolutionising fruit juice manufacturing, making them not only delicious but also packed with the vital dietary fibre our bodies need.

Fibre has many health benefits that include:

Improved digestive health – adds bulk to stools, promoting regular bowel movements and preventing constipation. Additionally, it feeds beneficial gut bacteria, supporting a healthy microbiome.

Weight management – high-fibre foods help you feel fuller for longer.

Blood sugar control – soluble fibre slows the absorption of sugar, preventing spikes in blood glucose levels.

Heart health – fibre-rich diets have been linked to lower cholesterol levels and a reduced risk of heart disease.

Disruptor® technology transforming fruit juice

Disruptor® technology is a game-changer in the food industry, allowing manufacturers to produce nutrient-dense products that retain their natural integrity. Unlike traditional processing methods that often denature foods, Disruptor technology allows for a process called ‘Dynamic Cellular Disruption®’ (DCD®), that preserves the nutritional value of fruits while enhancing their digestibility.

By utilising this innovative technology and process, food manufacturers can create fruit juices that maintain their fibre content without compromising taste or texture. This means consumers can enjoy the convenience of fruit juices and reap the health benefits of dietary fibre.

The future of fruit juices

With the demand for healthier food options on the rise, the future of fruit juices looks promising. Disruptor technology and DCD enable food manufacturers to meet consumer needs for whole foods that are digestible, complete, and nutritionally rich. By incorporating fibre into fruit juices, they can not only satisfy consumer preferences but also contribute to improved public health.

Health and wellness of humankind and the planet are key agenda items for our combined survival.  Innovations like Disruptor technology and DCD, play a crucial role in shaping the future of the food industry, and the world around us, as not only does whole fruit juice mean better health for consumers, because waste is either majorly minimised or eradicated all together, our earth gets to breathe better too.

In fact, Disruptor technology has been shown to drastically reduce waste across the entire food and beverage manufacturing sector.

So next time you go to buy your carton of fruit juice, check for the DCD Green Leaf crest as to whether your product has chosen to go all in or not.

Powerhouse Herb – Sceletium Tortuosum

Beware – not all extracts are created equal…

In the realm of natural wellness, Sceletium tortuosum, also known as ‘Kanna’, is emerging as a powerhouse herb celebrated for its potential therapeutic benefits. However, not all Sceletium extracts are created equal, and the journey from source material to final product can significantly impact the effectiveness of this botanical marvel. Let’s look at the benefits of Sceletium tortuosum extract, the importance of sourcing high-quality material, and the revolutionary role played by Dynamic Cellular Disruption®(DCD®) and Disruptor® technology in preserving its potency.

Sourcing matters: The essence of quality material

The effectiveness of any herbal extract begins with the quality of its source material. Sceletium tortuosum, native to South Africa, has a rich history of traditional use for mood enhancement and stress relief. However, not all sources uphold the standards necessary to deliver the full spectrum of benefits. The discerning consumer must be aware that subpar sourcing can compromise the efficacy of the final extract.

Extracting the essence: The right way vs the wrong way

The extraction process is a critical determinant of the potency of Sceletium tortuosum extract. Inferior methods can denature the original material, stripping away the compounds responsible for its therapeutic effects, and leaving a fair amount of the phyto-actives behind in so-called ‘waste’. It’s essential to distinguish between extracts made with precision and care and those produced using suboptimal techniques.

DCD® and Disruptor® technology: a game-changer in herbal extraction

Enter DCD® and Disruptor® technology, a revolutionary force in the realm of herbal extraction. This innovative approach challenges traditional methods by ensuring that the integrity of the botanical material is preserved throughout the extraction process. Unlike conventional techniques that may use heat or chemical solvents, Disruptor® technology effectively minimizes the risk of degradation, resulting in a more potent and effective Sceletium tortuosum extract.

Preserving nature’s blueprint

Higher potency – Disruptor® technology preserves the delicate balance of compounds within Sceletium tortuosum, ensuring a more potent extract with enhanced therapeutic benefits.

Purity assurance

By avoiding denaturation, Disruptor®-made extracts retain the purity of the original material, free from contaminants or unwanted by-products.

Sustainability

The efficiency of Disruptor® technology minimizes waste and energy consumption, aligning with sustainable practices for environmentally conscious consumers.

As interest in natural wellness continues to grow, the quality of herbal extracts becomes a crucial consideration. In the case of Sceletium tortuosum, sourcing high-quality material and utilizing advanced extraction techniques, such as Disruptor® technology, can make a significant difference in the efficacy of the final product. When seeking the transformative benefits of Sceletium tortuosum extract, choose wisely—opt for extracts crafted with care, precision, and a commitment to preserving the essence of this remarkable botanical through innovative technologies.

Revolutionising the Plate: Disruptor® Technology and the Eco-Friendly Evolution of F&B

In an era marked by growing environmental concerns and a heightened focus on personal health, the food and beverage (F&B) industry is undergoing a transformative shift. Consumers are becoming increasingly aware of the impact of their dietary choices on both their well-being and the planet. As a result, the demand for healthier, sustainably produced food and drinks is surging. This paradigm shift is not only influencing what ends up on our plates but also how it gets there.

The environmental toll of traditional food production

Traditional methods of food and beverage production have long been associated with significant environmental consequences. From deforestation for agriculture to excessive water consumption and greenhouse gas emissions, our conventional approach to feeding the global population has been taking a toll on the planet.

But that’s how it’s grown.  What about how it is made?

Consumers drive change

The shift towards sustainability is not solely driven by environmental concerns; consumers are also demanding healthier alternatives. As people become more conscious of their diets, they are seeking products that align with their health and wellness goals. This shift in consumer preferences is acting as a catalyst for the F&B industry to reassess and reformulate its products and how those products are processed.

Disruptor Technology: A game-changer for sustainability

Enter Disruptor® technology, a revolutionary force that is reshaping the landscape of food and beverage production. Disruptive technology is an innovative solution that challenges and replaces or fundamentally enhances traditional methods, offering more efficient, sustainable, and often healthier alternatives.

Disruptor® technology can process ‘whole’ organic material – meaning that the technology allows for things like whole orange, lemon, or apple juice for example.  It can also easily process all parts of the animal meat carcass – including 4th and 5th quarter meats – unlike any other processing equipment. No rendering required.

Making use of the entire plant or the entire animal has exponential positive impact on our environment – making the most of what we already have…

Reducing food waste

With billions of tons of food wasted each year globally, advancements in smart packaging, preservation techniques, and supply chain management are helping minimize the environmental impact of food production. However, it can now go beyond these measures as Green Cell Technologies’ has perfected Dynamic Cellular Disruption (DCD) through the Disruptor machine to process whole organic material without waste.  Or, the same process and technology can take existing waste streams, sterilise any micro or pathogens and turn ‘waste’ into ‘value.’  Waste can be reduced or completely eradicated.

Plant-based alternatives

The rise of plant-based alternatives is another disruptive force making waves. Companies are leveraging technology to create plant-based products that mimic the taste and texture of traditional meat, providing environmentally friendly options for consumers looking to reduce their ecological footprint.

Precision agriculture

In the realm of utilising data, sensors, and automation, farmers can optimize resource use, reduce waste, and minimise environmental impact. This not only benefits the planet but also contributes to the production of healthier crops – imagine disrupting all the goodness from improved rootstock?

As consumers increasingly prioritise healthier and more sustainable choices, the F&B industry is compelled to embrace new technologies that align with these values. The marriage of technology and sustainability is not just a trend; it’s an imperative for the survival of our planet. By supporting innovations that reduce waste, lower carbon footprints, and promote healthier eating, we can collectively contribute to a more sustainable and climate-friendly future—one bite and sip at a time.

Look out for the Green Cell Technologies (GCT) leaf on your favourite products to know that your manufacturer is using DCD and Disruptor technology.  No leaf – ask the manufacturer why they are not taking your health and the planet seriously…

Upcycling BSG Waste to Produce Value-Added Byproducts

Green Cell Technologies (GCT) and RWH Holdings (RWH) have worked with several global brewers over a period of eight years to understand the challenges around what to do with their leftovers—brewers spent grain (BSG) and brewers spent yeast (BSY)—and the answer, as it would happen, is disrupt it.

About 39 million tons of brewer’s spent grain (BSG) is produced annually worldwide. That is the same as approximately 3,900,000 waste removal trucks which, end-to-end will wrap around Earth’s equator 6.8 times. BSG is the residual waste stream that remains after the brewing of beer. BSG is remarkably high in protein and fiber, has some residual energy and is a healthy food intake for human, animal and earth—if prepared correctly. 

Unfortunately, BSG usually spoils within a day due to its high water, sugar and protein content. 

This brief period makes BSG difficult to transport and process further into food or other human-grade products. Therefore, it is predominantly used in the feed sector as it is not readily available for human consumption. (Food Valley, 2022)

Molecules found in the cellular structures of meat, fruit, vegetables, berries, nuts, grain, seeds etc. provide sustaining nutrition to achieve good health and wellbeing. Those molecules represent a comprehensive—across the spectrum—variety of all the macro and micronutrients necessary for human beings (including animals and earth) to flourish. 

However, current food and beverage processing methods damage many of these “molecules of interest” and nullify their efficacy. With reduced nutrition in processing and a loss of fiber, there is only a sense of satiety but not much nutritional or health benefit. Existing processing methods cannot easily and effectively process skins, seeds and grains (which contain significant nutritional or valuable properties) or radically reduce the fiber particle size to a level that will not upset the organoleptic sensibilities of the consumer. 

Therefore, a conventional processor ends each day with not only a large pile of waste, which impacts the environment, but also an end-product that is sold to consumers with a vastly reduced nutritional profile as compared to what it could be. Ironically, the “waste” represents the majority of the raw material molecules that are required for optimal nutrition. The “waste” also represents most of the fiber, which if ingested, would aid other nutritional and health benefits. Instead, consumers are mostly left fiber deficient. 

Disrupting BSG

Disruptor technology was used in several trials, to deploy a non-chemical process (Dynamic Cellular Disruption or DCD) to open greater than 99% of all cell structures of the BSG “waste” mass. It’s important to note that DCD and Disruptor technology can be applied to any organic and some inorganic materials.

During the DCD process, other than pipe loss, which is the same volume irrespective of the production size, there is zero waste generated as the plant material can be used in its entirety. 

DCD also renders bio-available, all the molecules for the body to utilize, and ensures digestibility of the insoluble material(s). DCD does not manufacture molecules, but instead extracts what is available within the cell structure—more efficiently. This is from the source material and therefore, outcomes are wholly reliant on the source material itself.   

DCD also reduces the microbiological contaminants, yeasts and molds found in source materials—product that is passed through the Disruptor will show improved microbiological cleanliness.

In short, the DCD process and Disruptor technology increases available nutrition per serving and reduces particle size and waste, which has a positive impact in the consumer as well as the environment. The increased extraction of molecules signifies an increase in yield and nutrition, and with the utilization of what would normally be considered waste, has a positive economic impact on the processing value chain as well as environmental impact—circular economy.

Conventional vs DCD/Disruptor Technology Processing—BSG

Conventional manufacturing of BSG typically involves drying and milling into a powder. Analysis of the powder will show that the particle size remains big which influences the taste of end products (comments of “cardboard” and “grittiness” are common).

Conventional drying and milling methods do not guarantee any increase in yield or nutrition, digestibility or microbial cleanliness.

DCD and Disruptor extract processing allows for particles to be reduced to sub-100 micron, microbially clean, increased available nutrition and bio-available—all in one step.  

The resultant emulsion can be dried, then milled into a very fine powder, complete with health benefits ready for further use in manufacturing if required.  

This then opens possibilities of extended product lines and additional revenue generation for brewers.

BSG Testing Methodology

Demonstrating that DCD and Disruptor technology adds value to BSG manufacture, 200kg of BSG were processed. Material samples were taken for analysis pre and post DCD and sent for independent laboratory analysis.

  1. University of Stellenbosch – pre- and post-DCD amino acid profile measurement.
  2. SGS (SANAS accredited commercial lab) – pre- and post-DCD microbiological and heavy metal measurement.
  3. Hearshaw and Kinnes (H&K) for pre- and post-DCD pesticide residue measurement.

Results

Phyto-Chemistry: Amino Acids (Protein)
The report shows an average protein increase of 29%. This is clinically very significant if one considers that the barley or starch source used for beer manufacture before it became BSG, was subjected to substantial boiling to conduct extraction for the beer manufacturing process of which, much of the protein will have already been solubilized into the beer liquid. This is proven by the step that is required to minimize it to prevent cloudy beer.

Microbiological
The report found that there was a 1,600,000-fold decrease (99.999% improvement) in total plate count from 16000000cfu/g to 10cfu/g between the pre-DCD and post-DCD samples. The DCD process also reduced yeasts and molds to “not detected” from 16800cfu/g and 28000cfu/g, respectively.

Heavy Metals
The test measured for heavy metals typically examined for food and beverage production safety, those being mercury, cadmium, lead, and arsenic. All results are <0.01 mg/kg where normal production (depending on source) will allow <3 mg/kg, <1 mg/kg, <0.1 mg/kg and <3 mg/kg, respectively. There is no difference from pre-DCD to post-DCD proving that DCD and Disruptor technology do not increase the prevalence of heavy metals, but rather significantly reduce them.

Pesticide Residue
Benzalkonium chloride at a residue rate of 5.5 mg/kg post-DCD and anomalous amount of piperonyl butoxide pre-DCD to post-DCD respectively were found in the test samples. 

H&K also tested for approximately 250 other residual pesticide compounds, of which none were detected above their reporting limits, as can be seen from the lab reports (available on request).

Benzalkonium chloride is a compound found in SABS approved sanitizers, disinfectants and detergents that are mandated for use as per ISO 22000:2018 certification requirements to effectively achieve clean in place (CIP) in processing spaces. The material safety data sheets are available on request. 

The lethal dose median (LD50) for benzalkonium chloride is 240 mg/kg, which would mean that a consumer would need to ingest 600 kg of the BSG in one sitting for there to be a 0.5 probability of any toxic effect. This is shown to be more improbable if one considers that the BSG flour will be diluted further as a part of a more complex ingredient final product. 

Piperonyl butoxide is a very low toxic effect ingredient found in “pest control” products, but in this case was anomalous. Notwithstanding, in a fit for purpose facility this control would be better monitored and reduced. 

This proves that DCD and Disruptor technology do not release or increase any additional pesticide residue and the post-DCD BSG is safe for human consumption.

Conclusion

No more need for mash tuns—Disruptor technology has proven that beer can be manufactured by processing the starch source material with some of the processing water, through the Disruptor to affect an immediate extraction of starches, thus negating the need to boil in mash tuns to perform an extraction. Previous trials showed an increase of 8% to 12% of extractable starches from the same starch source increasing the yield of beer manufacture proportionately. 

This means more beer from the same raw material, with quicker turn around so that more beer per plant can be produced with little additional capex, and the removal of the massive costs associated with the purchase of a mash tun.

Dual processing of beer and BSG value-added byproducts: The temperatures needed to facilitate conversion from starch to sugar and sugar to alcohol are a function of the DCD process. The insoluble fibers (BSG) are separated from the liquid by decanter. The liquid can go into the fermenter and the insoluble fibers, which have already been broken to sub-100 microns, can be dried to a stable flour as a food ingredient. This will show circular economy benefits, massive value chain savings and environmental benefits in processing because there would be no need to process beer first and then BSG, as they would effectively be processed at the same time.

Increased yields and waste reduction: Conventional processing of food and beverage consumer products does not efficiently extract nutritional compounds and produces excessive waste, which is usually where the true goodness is found. Conventional methods also reduce fiber in the final product, when compared to DCD and Disruptor technology, which utilizes the “whole” product.

DCD and Disruptor technology reduce microbial loading. This means that DCD BSG promotes food security from a waste stream more effectively than conventional means. 

Testing of the BSG flour has shown that there is a substantial release in protein, from which can be deduced that other phytochemistry will also increase proportionately. The post-DCD BSG is microbially and heavy-metal clean and fit for human consumption. It can also be concluded that DCD and Disruptor technology do not release additional heavy metals and pesticide residues. 

Perhaps the most significant consideration is that by deploying DCD and Disruptor technology earlier in the value chain (at the beer manufacturing phase), this will result in the entire raw material being used for beer and a food ingredient with no waste with added environmental and economic benefit.

To request the test results, email: info@greencelltechnologies.com

By Roy Henderson, Jan Vlok

(Article originally published on foodengineeringmag.com)